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The ∆I = 1/2 rule

One of the most striking hierarchies in low-energy QCD remains to be understood:

T (K+ → π+π0) =
√

3
2

A2 eiδ2

T (K0 → π+π−) =
1√
6

A2 eiδ2 +
1√
3

A0 eiδ0

T (K0 → π0π0) =
√

2√
3

A2 eiδ2 − 1√
3

A0 eiδ0

T
(
K0 → ππ|I=α

)
= Aαeiδα A0

A2
= 22.1

2



The ∆I = 1/2 rule

A notorious failure of large NC :

H|∆S|=1 ∼ GFJµ
WJµ

W

! ! !

! !

K
W

!

KK

O(N2
C) O(NC) O(1)

T (K0 → π0π0) = 0 →
[
A0

A2

]

Nc

=
√

2

Fukugita et al (1977); Chivukula, Flynn, Georgi (1986)
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The ∆I = 1/2 rule

MW HSM → HNf=4
∆S=1 =

√
2GFV ∗

usVud(k+Q+ + k−Q−)

!

Q± ≡ [s̄u]V −A[ūd]V −A ± [s̄d]V −A[ūu]V −A − (u ↔ c)

SU(4)L × SU(4)R: Q+ → (84, 1) Q− → (20, 1)

mc HNf=4
∆S=1 → HNf=3

∆S=1 =
√

2GFV ∗
usVud

∑
σ=1,10 CσQσ

!

Qσ : ..., [s̄d]V −A[q̄q]V +A, ...

SU(3)L × SU(3)R: (27, 1) → A2, A0, (8, 1) → A0

Λχ HNf=3
∆S=1

largeNC→ HNf=3
χPT
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The ∆I = 1/2 rule

The old lore:

• Resummation of O(1/NC) log(µ/MW ) up to µ > mc ”gives a moderate
enhancement”

• Charm threshold: µ < mc → Penguins

• Penguin matrix elements can be large compared to that of left-left operators

Shifman, Zakharov,Vainstein (1977); Bardeen, Buras, Gerard (1986)

After so many years, we still do not have a satisfactory explanation...
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The ∆I = 1/2 rule on the lattice

Cabibbo, Martinelli, Petronzio (1984); Brower, Gavela, Gupta, Maturana (1984)

χPT⊕ lattice

Bernard, Draper, Soni, Politzer, Wise (1985)

(27, 1) → g27
F 4

8
Tijkl

“
∂µUU†

”

ki

“
∂µUU†

”

lj

(8, 1) → −g8
F 4

8
Tr

h
Λ∂µU∂µU†

i

→ g′
8

F 2Σ

2
Tr

h
Λ(UM + M†U†)

i

At LO: A0
A2

= 1√
2

(
1
5 + 9

5
g8
g27

)

g27, g8, g′8 can be measured from two and three-point correlators:

〈K|Q±|ππ〉 from 〈K|Q±|π〉 and 〈K|Q±|0〉
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The ∆I = 1/2 rule on the lattice

Turned out to be a very difficult problem:

P1 Breaking of chiral symmetry: mixing with wrong-chirality four-quark operators
and with lower dimensional ones resulting in power-diverging mixing coefficients

Maiani, Martinelli, Rossi, Testa (1987)

Dawson, Martinelli, Rossi, Sachrajda, Sharpe, Talevi, Testa (1997)

P2 Power-diverging mixings occur also with chirally-invariant regularizations if
the charm quark is integrated out:

Om → mds̄P+d + mss̄P−d

P3 At large quark masses higher orders in ChPT are needed: many new couplings
→ no longer a direct relation between K → ππ and K → π

Kambor, Missimer, Wyler (1990); Bijnens, Pallante, Prades (1998); Golterman, Pallante (2000)
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The ∆I = 1/2 rule on the lattice
Blum, et al, (2001); Noaki, et al, (2001)

• Use finite Ns DW fermions → no exact chiral symmetry

• No active charm → power-divergent subtractions necessary

• Large quark masses → very large uncertainty in chiral extrapolations

• Further quenched ambiguities
→ Golterman, Pallante (2006)
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New Strategy

Lüscher and Giusti, PH, Laine, Weisz, Wittig (2004)

Lattice QCD can investigate in a well defined way the role of the different scales
that enter in the problem, in particular the role of mc

If the large enhancement is due to the large separation between mc + ΛQCD or
mc + mu there should be no effect in the theory with a light charm quark!

"

QCD ChPT

mc

mphys
c

ΛχPT

mu = md = ms

"

"

"

SU(4) SU(4)

SU(3)
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Revealing the role of the charm

• Step 1: mc = mu = md = ms

SU(4)-lattice QCD matched to SU(4)-ChPT in to extract the low-energy
couplings that mediate kaon decays near the chiral limit
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Revealing the role of the charm

• Step 1: mc = mu = md = ms

SU(4)-lattice QCD matched to SU(4)-ChPT in to extract the low-energy
couplings that mediate kaon decays near the chiral limit

If there is a hierarchy in this limit it could not be explained by penguins
operators, contractions, incomplete GIM ...
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Revealing the role of the charm

• Step 1: mc = mu = md = ms

SU(4)-lattice QCD matched to SU(4)-ChPT in to extract the low-energy
couplings that mediate kaon decays near the chiral limit

If there is a hierarchy in this limit it could not be explained by penguins
operators, contractions, incomplete GIM ...

• Step 2: ΛχPT + mc + mu = md = ms

SU(4)-ChPT matched to SU(3)-ChPT analytically
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Revealing the role of the charm

• Step 1: mc = mu = md = ms

SU(4)-lattice QCD matched to SU(4)-ChPT in to extract the low-energy
couplings that mediate kaon decays near the chiral limit

If there is a hierarchy in this limit it could not be explained by penguins
operators, contractions, incomplete GIM ...

• Step 2: ΛχPT + mc + mu = md = ms

SU(4)-ChPT matched to SU(3)-ChPT analytically

• Step 3: mc > ΛChPT + mu = md = ms

SU(4)-lattice QCD matched to SU(3)-ChPT to extract g27(mc), g8(mc)
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SU(4) on the lattice

Below MW the OPE (chiral flavour symmetry + CPS symmetry):

HQCD
w = g2

w
4M2

W
(Vus)∗Vud

∑
σ=± kσ1Qσ

1 + kσ2Qσ
2 ± ↔ (84, 1)/(20, 1)

Q±
1 =


(s̄γµP−u)(ūγµP−d) ± (s̄γµP−d)(ūγµP−u)

ff
− (u→ c),

Q±
2 =

“
m2

u − m2
c

” 
md (s̄P+d) + ms (s̄P−d)

ff

Therefore in any regularization that preserves chiral symmetry and CP:

Q±
1 = Z±

11Q
±,bare
1 + Z±

12Q
±,bare
2

Q±
2 = Z±

21Q
±,bare
1 + Z±

22Q
±,bare
2

Q±
2 do not contribute to physical matrix elements and nicely vanishes in the

SU(4) limit!

With Ginsparg-Wilson (overlap) fermions this pattern is mantained on the lattice !
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Ginsparg-Wilson fermions

Lattice Dirac operators can be constructed which are local, do not suffer from the
doubling problem and satisfy the Ginsparg–Wilson (GW) relation:

{D, γ5} = aDγ5D ↔ {D−1
xy , γ5} = aγ5δxy

Ginsparg and Wilson (1982)

Nielsen-Ninomiya no-go theorem : (i) − (iv) cannot be simultaneously fulfilled

(i) D is local (bounded by Ce−γ/a|x|)

(ii) D̃(p) = iγµpµ + O(ap2) for p , π/a

(iii) D̃(p) is invertible for all p -= 0↔ no doublers

(iv) chiral symmetry: {γ5,D} = 0

15



Ginsparg-Wilson fermions

The way out is by generalizing the chiral transformation → modifying the
requirement (iv) at finite lattice spacing

{D, γ5} = aDγ5D

but this is enough to ensure an exact symmetry :

δχΨ = ε γ5(1 − aD)Ψ δχΨ̄ = εΨ̄γ5 → δχSf = 0

Lüscher (1998)

The first explicit implementation was the overlap operator:

aDov = 1 − γ5sign(Q) Q ≡ γ5(1 − aDW)

Neuberger (1998)
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Overlap Operator

In spite of its looks, it is a local operator!
PH, Jansen, Lüscher (1999)

||Dov(0, r)|| ≤ e−γ|r|/a

DN =
1 + s

a
{1 − γ5sign(Q)} , Q = γ5(1 + s − aDw)
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Exact index theorem

UA(1) anomaly is recovered due to the non-invariance of the fermion measure
under a singlet chiral rotation:

〈δχO〉F = Tr [γ5(1 − aD/2)] 〈O〉F

i #$

5
Re

Im

2/a0

x

x

%

Tr[γ5(1 − aD/2)] = Nf × index(D)

A GW operator satisfies an exact index theorem and topological sectors can be
distinguished!

Hasenfratz, Laliena, Niedermayer (1998)
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Small O(a2) violations

The exact chiral symmetry ensures that the approach to the continuum limit is
faster...

Furthermore scaling studies show that O(a2) corrections are small for several
quantities such as FK, Σ

Wennekers, Wittig (2005)
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SU(4) in χPT

HChPT
w =

g2
w

4M2
W

(Vus)∗Vud

∑

σ=±
gσ[Oσ]

O± =
F 4

4

h“
U∂µU†

”

us

“
U∂µU†

”

du
±

“
U∂µU†

”

uu

“
U∂µU†

”

ds
− (u → c)

i

In contrast with SU(3), only two operators appear in SU(4)-ChPT at LO:

A0
A2

= 1√
2

(
1
2 + 3

2
g−

g+

)
[g+]Nc = [g−]Nc = 1

In the quenched case no Golterman-Pallante ambiguities at LO!
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The Matching

By equating certain correlation functions in lattice QCD and in the chiral theory:
three-point functions of the bare operators and two left currents

Lattice QCD χPT

Z2
A(g0)

P
x

˙
[JL0(x)]αβ[JL0(0)]βα

¸ R
d3x

˙
[JL0(x)]αβ[JL0(0)]βα

¸

↓ ↓
Z2

AC(x0) C(x0)

Z2
A(g0)Z

±(g0)
P

x,y

D
[JL0(x)]du Q±(0) [JL0(y)]us

E
g±

R
d3x

R
d3y

D
[JL0(x)]du O±(0) [JL0(y)]us

E

↓ ↓
Z2

AZ±(g0)C
±(x0, y0) g±C±(x0, y0)

More concretely:

Rσ(x0, y0) ≡ Cσ(x0,y0)
C(x0)C(y0)

Rσ(x0, y0) ≡ Cσ(x0,y0)
C(x0)C(y0)
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The Matching

gσ [Rσ(m,V,LECS)] = [kσ(MW )]RGI

[
Zσ(g0)

Z2
A

]

RGI
Rσ

↓ ↓ ↓ ↓
χPT P.T. − 2 loop N.P. Lattice

Each of the needed elements was not trivial:

• The possibility to approach the m → 0 limit, to reduce the number of
low-energy constants involved in Rσ

→ ε-regime of χPT ⊕ p-regime

• Taming the large fluctuations observed in the ε-regime

→ Low-mode averaging

• Non perturbative renormalization

→ Matching to an intermediate scheme (SF- tmQCD)
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Rσ in ChPT

In a finite volume we can distinguish two regimes of χPT:

p-regime: mΣV + 1 ε-regime: mΣV ≤ 1

m!
$1

L L

m!
$1

Standard χPT in finite V : Zero-modes of pions are not perturbative!

m ∼ p2 L−1, T−1 ∼ p m ∼ p4 L−1, T−1 ∼ p
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The ε-regime

The χ expansion can be reordered by factoring out the constant field
configurations and treating them as collective variables:

U = U0Uξ = U0 e i 2ξ(x)/F
Z

dxξ(x) = 0

Z =

Z

SU(Nf )
dUo

Z
dξ e−Sχ(Uo,ξ)

Gasser, Leutwyler (1987),Hansen (1990), Hansen, Leutwyler (1991)

• Implies a reordering of the chiral expansion: at any order less relevant
couplings appear as compared to the usual chiral expansion

• The quenched or partially quenched version require some care, in particular to
consider fixed topological sectors:

Zν =

∫
U(Nf )

dUo det(U0)
ν

Z
dξ e−Sχ(Uo,ξ)

Damgaard, Splittorff (2000); Damgaard, Diamantini, PH, Jansen (2002); Damgaard, PH, Jansen, Laine,

Lellouch (2003)
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Rσ in ε-regime

PH, Laine (2003), Giusti, PH, Laine, Weisz, Wittig (2004)

For the processes at hand at NLO in the ε-expansion no higher order operator
neither strong nor weak enters!

NLO: χ ≡ MU Lµ ≡ i∂µUU†, Wµν = 2(∂µLν + ∂νLµ); (∆ij)ab = δaiδbj

p-regime ε-regime

Gasser, Leytwyler HQCD L4 〈DµU†DµU〉 〈U†χ+ χ†U〉 ×
L5 〈DµU†DµU

“
U†χ+ χ†U

”
〉 ×

L6 〈U†χ+ χ†U〉2 ×
L8 〈χ†Uχ†U + U†χU†χ〉 ×

Kambor,Missimer,Wyler Hweak D±
2 t±

ij,kl
〈∆ij(χ− χ†)〉〈∆kl(χ− χ†)〉 ×

D±
4 t±

ij,kl
〈∆ijLµ〉〈∆kl

n
Lµ, (χ+ χ†)

o
〉 ×

D±
7 t±

ij,kl
〈∆ijLµ〉〈∆klLµ〉〈(χ+ χ†)〉 ×

D±
20t±

ij,kl
〈∆ijLµ〉〈∆kl∂νWµν〉 ×

D±
24t±

ij,kl
〈∆ijWµν〉〈∆klWµν〉 ×
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Rσ in ε-regime

2 R±(x0, y0) = 1 ± 2
(FL)2

[
ρ−1/2β1 − ρk00

]
= 1 ± K

with ρ ≡ T/L and β1, k00 are shape coefficients of the box.

• same for all ν

• independent of x0 and y0

• same in (partially-)quenched theory

• no higher order weak or strong LECS

1.2 1.4 1.6 1.8 2.0 2.2 2.4
L [fm]

-1.0

-0.5

0.0

0.5

T/L=1.0
T/L=2.0
T/L=3.0

K

26



Rσ in p-regime ChPT
PH, Laine, hep-lat/0607027

For these observables the ε-regime and ∞-volume results can be smoothly
reached from the p-regime expressions

Nf = 3, L = 2fm, T/L = 2, Λ+ = 500 − 2000MeV :

0.0 1.0 2.0 3.0 4.0 5.0
M L 

0.0

0.5

1.0

1.5

2.0

2.50.0 0.5 1.0 2.0 4.0 8.0

µ

inf.volume formula

p-regime

&-regime (any fixed ')

2R+(−T/3, T/3)

Deviations from the infinite volume expectation are significant for ML ≤ 5
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Rσ on the lattice

In the ε-regime: mΣV ≤ 1 , large fluctuations in the observables are observed:

〈λi〉ν =
O(1)
ΣV

, ∆λ = λi+1 − λi ∼
O(1)
ΣV

≥ m

Low-lying spectrum of Dm is discrete: ∆λ ≥ λk + m

Space-time fluctuations in the wave-functions of the low-lying spectrum → large
fluctuations in point-to-all propagators!
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Two strategies to tame these fluctuations:

• Low-mode averaging: applicable to these observables

• Physics from zero-mode wave-functions: involves new observables
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Low Mode Averaging (LMA)

Giusti, PH, Laine, Weisz, Wittig (2004); Degrand, Schaefer (2004)

Fluctuations in the wave functions of low modes will be averaged out if

CI(tx − ty) =
X

+y

Tr[ΓIS(x, y)ΓIS(y, x)] ⇒
X

x,y,|tx−ty|=fixed

Tr[ΓIS(x, y)ΓIS(y, x)],

When only a few eigenfunctions give the largest contribution:

S(x, y) = Sh(x, y) + Sl(x, y), Sl(x, y) =
1

V

nX

k=1

vk(x)vk(y)†

λk + m

CI(tx − ty) = CI
hh(tx − ty) +CI

hl(tx − ty)+ CI
ll(tx − ty)

↓ ↓ ↓
X

+y

P
+x,+y

X

tx,ty,|tx−ty|=fixed

X

+x,+y

Similarly most of the contributions containing Sl to the three-point functions are
averaged
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Low Mode Averaging (LMA)

Important variance reduction in the three point functions both in the p and ε
regimes !

p-regime ε-regime
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nlow = 20!
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The simulation
Giusti, PH, Laine, Pena, Wennekers, Wittig, hep-ph/0607220

[JL0]du [JL0]us

Q±
1

[JL0]αβ[JL0]βα

We use the overlap operator:

DN =
1 + s

a

{
1 − A

(A†A)1/2

}
, A = 1 + s − aDw

Neuberger 1997

We are in the quenched approximation...

β L/a T/a nlow L[fm] m # cfgs
ε-regime 5.8485 16 32 20 2 ms/40, ms/60 O(800)
p-regime 5.8485 16 32 20 2 m2/2 − ms/6 O(200)
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Rσ

For the masses in the ε-regime we bin in |ν|:

0

1

2

3

4

5

6

7

8

9
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11

12

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

|'|

R+ R-

&-regime

0

0.5

1

1.5

2

2.5

3

0 0.02 0.04 0.06 0.08
a m

R+

R-

The expected features of the Rσ(x0, y0) in the ε-regime: independence on x0, y0,
m and ν are well reproduced by the data
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Fitting strategy

We choose two combinations that have smaller mass corrections: R+ and R+R−

and fit the NLO ChPT expressions to extract g± and Λ± using all masses

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 0.02 0.04 0.06 0.08
m a

R+

0.8

1

1.2

1.4

1.6

1.8

2

0 0.02 0.04 0.06
m a

R+ R-

There is some tension in fitting only p or only ε regime which could indicate
non-negligible higher order corrections, we include a systematic error to account
for this
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Non-perturbative renormalization factors

Matching R± to tm-Wilson fermions at some reference pion mass where the Z
factors are known non-perturbatively at MK

bZ+
ov

Z2
A;ov

(g0) ≡
bBK

Bov
K (g0)

=
bBK

Btm
K (g′0)

· Btm
K (g′0)

Bov
K (g0)

=

[
lim

g′0→0

bZ+
tm(g′0)

Z2
A;tm(g′0)

· Btm
K (g′0)

]
· 1

Bov
K (g0)

At β = 5.8485 :

bare P.T. MFI P.T. N.P.

Ẑ−/Ẑ+ 0.525 0.582 0.584(62)
Ẑ+/Z2

A 1.242 1.193 1.15(12)
Ẑ−/Z2

A 0.657 0.705 0.561(61)

Dimopoulos, Giusti, PH, Palombi, Pena, Vladikas, Wennekers and Wittig, hep-lat/0607028
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Results K → ππ in the SU(4) chiral limit
Giusti, PH, Laine, Pena, Wennekers, Wittig, hep-ph/0607220

g+ g−

This work 0.51(3)(5)(6) 2.6(1)(3)(3)
”Exp” ∼ 0.5 ∼ 10.4

Large Nc 1 1

• ∆I = 3/2 very close to the ”experimental” value

• ∆I = 1/2 amplitude a factor ∼ 4 too small

• A significant enhancement A0/A2 ∼ 6: problem with large Nc that cannot be
explained by penguins!
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Step 2: Decoupling the charm quark

As the charm quark mass is increased, the first interesting observation is that for
muΣ
F 2 , mcΣ

F 2 , (4πF )2 the charm can be integrated out analytically in the
effective theory:

g8(mc) = 1
2

[
1
5g

+
(
1 + 15 M2

c
(4πF)2

ln Λχ
Mc

)
+ g−

(
1 + 3 M2

c
(4πF)2

ln Λχ
Mc

)]

g27(mc) = 3
5g

+

• Logarithm enhancement of octect!

• Many unknown NLO couplings:
bands 1GeV ≤ Λχ ≤ 4GeV

PH, Laine (2004)

0 100 200 300 400 500
mc [MeV]

0
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20

g 8/g
27 gw

^ - / gw  = 5^ +

gw
^ - / gw  = 1^ +
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Step 3: Decoupling the charm quark

Giusti, PH, Koma2, Laine, Necco, Pena, Wennekers, Wittig

Matching the lattice QCD theory with a massive but active charm to a SU(3)
theory to get g27(mc), g8(mc)

There are new challenges:

• penguin contractions are more noisy but we expect that LMA can tame the
fluctuations also there...

• Quenched artifacts on the effective theory side, which are however rather mild
in the ε-regime

more resuls soon...
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Conclusions

• The ∆I = 1/2 remains a big challenge in QCD: large Nc fails quite miserably
and lattice QCD is only starting to be able to tackle this difficult problem

• The role of the charm quark mass (penguins) in the enhancement can be
addressed in an unambiguous way in lattice QCD, by comparing the results in
an SU(4) light flavour theory to the physical SU(3) light flavour theory

• The SU(4) theory is easier and the amplitudes have been computed for the
first time near the (quenched) chiral limit: an enhacement of A0/A2 ∼ 6 is
found

– not enough to explain the physical result
– already a challenge for large Nc and the standard lore...
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Outlook

• Next step: monitor the dependence on mc as it is increased

• The relevance of final state interactions could eventually be addressed through
a direct computation of K → ππ

• Of course we would like to go unquenched... JLQCD presented in Lattice 06
remarkable progress towards large scale dynamical overlap fermions simulations!

hep-lat/0607020, Fukaya et al
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